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Abstract

Pella and environs is situated on Hawal Massif of northeastern Basement Complex of Nigeria. It covers an area of
about 216.8km’. The rocks in the area has for long been described as undifferentiated Basement Complex. This paper
is aimed at differentiating and suggesting the petrogenetic affinity of the rocks by combing field data with
petrography and geochemistry. Stream, compass and road traversing were employed to geologically map
outcropping components. Petrographic studies of four thin sections were studied using Steindorff Mel Sobel
Petrological Microscope. Atomic Absorption Spectrometry (AAS) method was employed to analyze eighteen
pulverized samples. The geochemical results were interpreted using PetroGraph version 2 beta software. These
results differentiated the rocks into migmatite-gneiss, granite gneiss, Older Granites and basalts. Major mineral
modes in migmatite-gneiss, granite gneiss and the Older granites are quartz, feldspars and biotite while basalt is
dominated by plagioclase, olivine and sanidine. Migmatite-gneiss, granite gneiss and the Older Granites have
similarities of geochemical data with enrichment in SiO, ranging from 67.52 - 71.02 wt. %, K,O ranges from 3.35 -
4.40 wt. % and Na,O ranges from 1.87 - 4.00 wt. %. Basalts are enriched in MgO with ranges from 5.99 - 6.78 wt. %,
TiO, ranges from 3.27 - 4.35 wt. %, Fe,03 ranges from 14.1 - 15.5 wt. % and CaO ranges from 7.11 - 7.64 wt. %.
Pegmatite are enriched in K,O with ranges from 9.98 - 11.4 wt. % but depleted in CaO with ranges from 0.40 - 0.76 wt.
% and TiO, from 0.06 - 0.12 wt. %. Some selected oxides and trace elements plotted on Harker using SiO, for gneisses,
granites and pegmatite and MgO for basalts as fractionation index revealed that Fe,O,, CaO, Co, Sr, Al,O, and K,O
shows a continuous negatively correlated well-defined linear trend. The chondrite-normalized Rare Earth Elements
(REE) patterns of most of the rocks are characterized by enrichment in Light Rare Earth Elements (LREE) relative to
depletion in Heavy Rare Earth Elements (HREE). The negative anomalies shown by Eu are prominent in the rocks.
Total-Alkaline-Silica (TAS) discrimination plot of SiO, vs. Na,O + K,O revealed that granite gneiss and granite falls
within granitic field. Alumina-Iron-Magnesium (AFM) diagrams for gneisses, granites and pegmatite revealed Calc-
alkaline while basalt is tholeiitic. Discrimination plots of Rb vs. (Yb + Ta) for granite gneiss and granites revealed
Syn-Collision (Syn-COLG) and Volcanic Arc Granite (VAG). The granites are I-type, metaluminous to weakly
peraluminous and have continental crust affinity. Basalts are Mid Oceanic Ridge (MORB) with mantle affinity. All
the rocks suggest fractionation and igneous progenitor.
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Introduction

Little is known about the geology of the northeastern
Basement Complex of Nigeria and thus for long has
been described as undifferentiated Basement Complex
(McCurry 1976). However, Adekeye and Ntekim
(2004), Patrick (2005), Bassey (2006), Bassey, N. E.
and Valdon, Y.B. (2011) and Kwache and Ntekim (2015)
worked in Song and environs of the northeastern
Basement Complex and reported that migmatites,
gneisses and Older Granites are the dominant rock units
in the area. These authors submitted that the granites
consist mostly of medium to coarse grained and coarse
grained to porphyritic varieties with well-developed
sub- hedral to euhedral crystals which have experienced
extensive faulting and shearing. According to them,
migmatites and the gneisses are extensively intruded by
granitic rocks of the Pan African Orogeny (600 =+
150ma). They further reported that the granites are
commonly intruded by pegmatite and basalts with the
basalts occurring as extensive flows and unconformably

159

overlying the basement rocks. Pella and environs form
part of the northeastern Basement Complex. This paper
therefore combines field data with petrography, major,
trace and rare earth elements data to differentiate and
suggest the petrogenetic affinity of the rocks of Pella
and Environs.

Study Location

Pella and environs is situated on the eastern part of
Hawal Massif of the northeastern Basement Complex of
Nigeria (Figure 1A). Hawal Massif is bounded by the
Tertiary - Quaternary Chad Basin to the north, the Yola
and Gongola arms of the Cretaceous Benue Trough to
the west and south and the Cameroun mountains to the
east. The study area consists of high and low topography
(Figures 1A and 1B). It lies within geographical
coordinates; latitudes 10°07'N and 10°15'N and
Longitudes 12°45'E and 13°00'E. It covers an area of
about 216.8 km’ and is accessible by both major and
minor roads.
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Fig. 1a: Topographic map of Pella and environs Figure 1B. SRTM Imagery of Pella and environs (Federal Surveys, 1968)
Materials and Methods

Materials used include but not limited to hammers,
GPS, compass, hand lens, etc. PetroGraph version 2
beta, GeoRose and Microsoft statistical software were
used for geochemical interpretations and joint
directions respectively. Steindorff Mel Sobel
Petrological Microscope was also used for petrographic
studies. Stream, compass and road traversing were
employed to geologically map outcropping components
in the study area. A total of forty rock samples were
collected out of which four representative samples were
selected for petrographic and eighteen samples were
equally selected for geochemical analysis from different
lithologic units. Petrographic studies were carried out at
the Nigerian Geological Survey Agency mini
petrological laboratory in Abuja. Geochemical analyses
of major, trace and rare earth elements were carried out
ACME Lab in Canada using Atomic Absorption
Spectrometry (AAS).

Results
Lithologic Units

Ground truthing revealed that Pella and environs is
underlain by the Pre-Cambrian Basement Complex
rocks. The major (mappable) rock units in the area are
migmatite-gneiss (Figure 2), medium grained granite
(Figure 3) and coarse porphyritic granite (Figure 4).
Minor (unmappable) rocks are granite gneiss, coarse
grained granite, pegmatite and basalts (Figure 5) with
subordinate veins of quartz and aplite. The geologic
map is presented in Figure 6.
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Fig. 6: Geologic map of Pella and Environs
Petrography

Migmatite-gneiss, medium grained granite, coarse
porphyritic granite and basalt were studied. The mineral
modes in migmatite-gneiss are hornblende, plagioclase,
orthoclase, biotite, zircon, pyroxene, opaque and quartz
(Figure 7A and 7B). The medium grained granite
consists of quartz and has other minerals such as
muscovite, hornblende, plagioclase, orthoclase,
microcline, biotite, zircon and opaque (Figures 8A and
8B). Coarse porphyritic granite which is dominated by
microcline feldspar also consists of muscovite,
hornblende, plagioclase, orthoclase, quartz, biotite,
sphene and opaque minerals (Figures 9A and 9B). The
mineral assemblages in basalt which is dominated by
plagioclase include, sanidine, pyroxene, quartz, olivine,
hornblende and opaque (Figure 10A and 10B).
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Fig. 7a: Photomicrograph of migmatite gneiss

Geochemistry

Geochemical result is presented in Table 1. Migmatite-
gneiss is represented by MG, granite gneiss (GG),
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(Note: Mc — Microcline; Pl- Plagioclase; Hb — Hornblende; Q7 —
Quartz; Sd — Sanidine; Ov — Olivine; Px — Pyroxene; Op— Opaque;
Bt—Biotite; Oc— Orthoclase, Sp—Sphene and Zr—Zircon)

medium grained granite (MGG), coarse grained granite
(CGQG), coarse porphyritic granite (OPG), basalt (BT)
and pegmatite (PG).

Discussion
Lithologic Units

Migmatite-gneiss is medium grained, moderately
foliated and consists of feldspar, biotite and quartz as
dominant minerals. It occurs mostly as low-lying
outcrops at the base of the granitic rocks in Holma,
Hong and Fadama Rake areas (Figure 2). Granite gneiss
is mesocratic, medium-coarse grained, mostly weakly
foliated marked by alignment of mafic and felsic
minerals along a preferred direction. It occurs mostly as
pockets of low-lying outcrop at Mutaku hills and Fachi
areas. The Older granite occurs as plutons dominated by
boulders of different sizes and shapes covering more
than a quarter of the study area. The medium grained
granite is leucocratic and consists of quartz, feldspars
and mica as dominant minerals (Figure 3). Coarse
grained granite occurs at the base of the porphyritic
granite and is also dominated by quartz, feldspars and
biotite. The coarse porphyritic granite is dominated by
large phenocryst of pink feldspars (microcline) with
quartz and mica as subordinate minerals (Figure 4).
Pegmatite and aplite occurs as tabular dyke-like
intrusion containing mainly quartz and feldspar with
subordinate mica. Basalts are fine to medium grained
and occur both as massive bodies and boulders of
different sizes and shapes (Figure 5). Most of the rocks
have experienced some tectonic deformations
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evidenced by the presence of joints, shear zones and
faults. The gneisses, granites and the basalts have
gradational as well as transitional boundaries while
pegmatite and aplite have sharp boundaries with the
country rocks.

Petrography

The mineral modes in migmatite-gneiss are hornblende,
plagioclase, orthoclase, biotite, zircon, pyroxene,
opaque and dominated by quartz (Figures 7A and 7B).
Biotite, hornblende, opaque and plagioclase show
parallel alignment along a preferred direction. The
Older granite exhibits absences of alternating bands of
micas and feldspars along a preferred direction. It is
dominated by interlocking grains of quartz and
feldspars minerals with subordinate biotite, muscovite
and hornblende randomly disseminated within the
groundmass. However, the mineral modes in medium
grained granite are muscovite, hornblende, plagioclase,
orthoclase, microcline, biotite, zircon, opaque and
dominated by quartz (Figures 8A and 8B). Coarse
porphyritic granite which is dominated by microcline
feldspar also consists of muscovite, hornblende,
plagioclase, orthoclase, quartz, biotite, sphene and
opaque minerals (Figures 9A and 9B). The mineral
assemblages in basalt which is dominated by
plagioclase include, sanidine, pyroxene, quartz, olivine,
hornblende and opaque (Figures 10A and 10B).

Plagioclase feldspar shows irregular grains, albite
twining while Orthoclase is anhedral- subhedral,
cloudy, creamy-yellow to flesh pink, some unclear
directional cleavages, low relief and not pleochroic.
Microcline exhibits grid twinning (cross-hatched),
colourless, cloudy and is massive with perfect cleavage
that lacks pleochroism but shows first-order
birefringence of white colour. The typical microcline
clast in Figure 9A indicates feldspar porphyry. Quartz
has anhedral to subhedral grains, poor relief,
undulose/wavy extinction with creamy to colourless
first-order interference colours and lacks twining and
visible cleavage while biotite is dark to brownish,
strongly pleochroic and goes into parallel extinction.
Hornblende is poikiloblastic, elongate in form and has
strong pleochroism from brown to greenish-brown and
goes into inclined/oblique extinction at an angle of 20",
Pyroxene is prismatic with good directional cleavage
that meets at obtuse angle. Zircon is pleochroic,
prismatic with bipyramid terminations displaying knee-
shaped twins showing high relief with moderate
birefringence of first to second- order of bluish colour.
Sanidine feldspars show prismatic tabular/lath shapes
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Table 1: Geochemical Results
Major Oxides
gfiii MG 1| MG 2 | Ma3 | 6o | 6o 2 IMaa iimaa 2fcoc 1|caa 2|ora 1 [orc 2|ope 3| BT1 | BT2 | BT3 | PG1 | PG2 |PG3
510, 673 | 6752 | 662 | 6843 | 6888|7066 | 7050 | 69.04 | 71.02 | 6927 | 6834 | 6788 | 47.76 | 46.65 | 4587 | 64.45 | 6530 |65.77
AlbO3 | 124 115 13.2 11.9 11.5 143 14.7 153 142 129 12.0 11.6 | 16.1 16.7 171 17.5 17.1 16.6
S03 <0.04| <0.04 | <004 | <02 | <0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 <0.1 | <0.1 =(.1 <0.1 =0.1 |=0.1
P205 004 ] 004 0.05 0.05 006 | 007 | 006 0.08 0.07 0.08 006 | 009 | 009 0.08 0.1 029 056 034
Fe203 | 598 | 6.63 5.89 492 | 477 6.64 506 | 464 352 6.00 5.53 3.67 | 141 15.0 155 0.97 1.49 |2.07
T102 1.34 | 1.44 1.40 1.10 1.03 1.10 1.20 1.23 1.21 128 1.31 135 | 435 | 401 327 0.06 0.08 J0.12
MgO 1.33 | 1.76 1.50 1.72 1.68 1.30 1.10 1.40 1.60 1.80 1.90 1.70 | 649 6.78 3.99 0.02 0.06 ]0.04
Ca0 311 ] 3.01 2.54 296 3.07 1.45 138 1.42 1.39 1.41 1.43 1.50 | 7.56 7.11 7.64 0.40 043 076
Na20 1.87 | 1.96 2.0 399 | 4.00 3.00 | 2.05 3.20 2.18 3.00 3.31 400 | 223 2.08 212 2.60 3.00 |2.84
K20 320 3.78 3.54 335 3.75 375 | 350 383 357 4.00 416 | 440 | 155 145 1.77 114 10,8 998
BaO 072 ] 091 0.54 0.66 056 | 046 | 036 0.64 025 0.62 0.90 1.00 | 097 0.89 1.06 0.81 090 |1.00
LOI 0.55 | 051 0.55 047 045 | 040 | 044 043 0.40 0.44 043 041 040 | 040 040 0.50 0.51 051
Total |99.39|100.21|100.11| 99.66 | 99.71 |101.70|100.44]101.26]101.53]| 100.90] 99.47 |100.05]101.61|101.17]| 100.78 | 99.07 | 100.22 J100.14
Trace El ts
Hf 0.5 0.7 0.3 0.80 0.68 1.43 1.56 0.8 0.97 1.12 1.05 1.20 13.5 11.4 12.5 36.1 42.0 |522
Li 205)] 158 18.5 159 168 80.3 87.3 236 251 397 380 | 378 | 402 | 421 413 - - -
Rb 80.5 | 85.7 954 158 171 211 201 170 170 220 200 200 38.7 | 403 46.8 6635 710 816
Ta 1.2 0.8 1.0 097 1.10 2.81 2.69 1,10 0,95 1.04 0,95 0.89 7.70 6.8 740 | 643 77.1 832
Nb 269 | 243 239 12.8 109 | 307 | 288 123 10.8 15.0 14,7 140 | 700 | 66.8 | 686 - - "
Cs 18 | 20 1.7 14 1136 | 770 | 80 [ 206 | 212 [ 650 [ 620 | 643 [ 071 [ 056 [ 065 | 165 | 183 [200
Ba 200 195 181 137 146 689 658 653 672 965 951 958 365 355 360 130 148 154
Co 16 17 16 13 11 12 15 14 16 19 21 19 51 49 57 <1 < <1
Pb 6.4 5.9 3.7 35.1 318 352 378 213 227 202 197 189 7.50 73 7.00 - - -
Sc 12 11 15 7 9 3 2 3 5 4 1 2 - - - 3 6 4
Zn 202 )] 228 20.5 107 113 329 333 253 233 281 288 289 203 200 201 52.9 530 |580
Sr 112.0] 1257 115 104 115 | 2370 | 346 342 287 478 545 650 299 345 385 50 6.1 69
2L, 205 222 19.7 18.5 205 ] 227 | 23.6 138 151 294 287 300 453 459 451 - -
Th 412] 4.09 4.89 8.34 2.0 9.30 97 79 75 521 487 50 5.00 532 49 180 167 155
U 2.01 1.91 1.87 1.80 198 | 240 | 237 1.5 1.3 1.89 1.97 1.90 1.30 1353 1.44 12.4 18.6 16.2
Ti 0.20 0.1 0.2 0.82 0.67 1.70 1.9 1.03 0.98 0.51 0.52 050 | 035 032 033 = - ks
Mn [394.7| 4004 | 3873 | 257 | 268 | 1161 | 1175 | 1065 | 1108 | 929 | 976 | 944 | 2476 | 2455 | 247 = @ E
Ho 1 1.2 1.4 1.8 2 1 1.7 2.2 1.9 0.9 0.7 0.5 1.2 09 0.6 <0.1 =01 <0.1
Gd 7.5 73 8 AT 49 5:2 6.1 84 935 3T 42 69 53 48 6.4 9.1 03 04
v 54 46 62 13 18 6 5 2 5 8 10 176 188 161 - - -
Cu <10 | <10 <10 <10 <10 <10 =10 <10 <10 <10 <10 <10 47 50 52 <10 <10 <10
Sn 4 3 4 3 3 4 3 =] T 4 4 6 15.8 13.7 9.6 7 15 10
Ni <20 | <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 176 162 193 <20 <20 <20
Ga 37 28 27 24 o 19 22 21 13 25 29 36 17 19 18 - - -
REE
Dy 1.76 | 1.98 1.66 1.71 1.82 24 22 1.50 1.43 1.44 1.43 136 5.80 | 490 55 0.50 0.4 0.62
Lu 003] 0.03 0.04 0.03 003 | 0,10 | 0,12 0.1 0.1 0.21 023 020 - - - 0.10 010 |0.10
Nd 45.73| 433 509 37 40 36 48 82 90 95 102 120 330 | 321 334 | 273 252 | 248
Yh 0321 033 040 028 | 023 | 095 10 1.1 12 142 1.50 140 1.20 12 1.21 6.10 7.12 | 8.08
¥ 37 30 26 48 52 20 37 45 53 39 33 28 194 ] 205 | 212 <2 <2 <2
Ce 437 | 45.7 44.8 529 | 556 | 1976|2045 457 | 438 | 77.6 | 764 77.0 101 97.8 100 67.8 76.8 | 88.2
La 167 17.2 16.4 654 | 64.7 13.3 150 | 699 7.12 | 44.8 | 43.1 43.8 20.1 19.7 19.5 21.5 256 1270
Pr 0.94 1.1 0.60 1.50 1.60 | 241 2.76 1.61 1.70 | 123 11.6 11.1 4.40 43 4.3 0.23 0.30 0.4
Sm 128 ] 1.45 1.05 2.83 3.05 | 340 | 390 | 4.20 4.0 7.0 6.30 7.34 487 | 3.57 | 4.67 1.47 206 (244
Eu 0086] 0,076 | 0059 | 008 | 0,08 | 023 | 032 0,44 0.45 1.02 09 0.9 030 | 0,30 | 031 030 0,10 J0.21

showing simple twin (Carlsbad) with two perfect
cleavages. Olivine is pale-green to brownish, hexagonal
or spindle shaped. Opaque minerals are few and
anhedral in shape.

Geochemistry

Geochemical results in Table 1 and Figures 11-13

revealed that granite gneiss and the Older granite are
enriched in SiO, with ranges from 67.8 to 71.02 wt. %,
K,0(3.35-4.40 wt. %) and Na,O (2.18 - 4.00 wt. %) but
depleted in Fe,0O,, AL,O, and TiO,. Migmatite-gneiss is
also enriched in SiO, with ranges from 62.20 - 67.52 wt.
% but depleted in Na,O with ranges from 1.87- 2.00 wt.
% relative to enrichment in granite. Expectably, basalts
are enriched in MgO with ranges from 5.99 - 6.78 wt. %,
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TiO, (3.27 - 4.35 wt. %), Fe,0, (14.1 - 15.5 wt. %) and
CaO (7.11 - 7.64 wt. %). Pegmatite is enriched in AL,O,
(16.6 — 17.5 wt. %) and K,O (9.98 — 11.4 wt. %),
relatively enriched in SiO, (64.45 — 65.44 wt. %) but
depleted in CaO, (0.40—0.76 wt. %), Fe,O, (0.87—-2.07
wt. %) and TiO, (0.06 — 0.12 wt. %). The enrichment of
Si0, and depletion in Al,O, in the gneisses and the Older
granite depicts acidity which is attributed to abundance
of quartz as revealed by petrography of the rock. The
enrichment of Fe,O, and TiO, in the basalt denotes
basicity which is attributed to abundance of plagioclase
feldspars and opaque which is consistent with
petrographic studies. The enrichment of K,0, CaO, and
Na,O in granites and pegmatite depicts alkalinity which
is attributed to abundant occurrence of K-feldspars as
shown by the modal compositions of the rocks. The
depletion in the concentration of Fe,O, and CaO, the
enrichment in SiO, and Na,O and the close similarities
of the values in granite gneiss with the granites may be
evidence of crystallization and evolution of the granite
gneiss from felsic parent rock probably the Older
granite.
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Some selected oxides and trace elements plotted on
Harker using SiO, as fractionation index for gneisses,
granites and pegmatite and MgO as fractionation index
for basalts shows that major oxides of Fe,O,, CaO and
ALO, and MgO vs. K,0O shows continuous negatively
correlated well-defined linear trend for gneisses,
granites, pegmatite and basalt respectively (Figures 14 -
17). Similarly, Harker plots of SiO, against some
selected trace elements (Co and Sr) equally show well-
defined negative linear trend (Figures 18 - 19).
Lithophile element of Rb plotted against Sr on Harker
also show a negative well-defined linear trend (Figure
20). The continuous negative correlated well-defined
linear trend in gneisses and granites suggest that Fe,O,,
Ca0, Al O,, Co, and Sr abundances decreases with
increase in SiO,. Similarly, MgO increases with
decrease in K20 in the basalts. These negative well-
defined linear trend correlations of the various rocks on
the Harker plot suggest fractionation of the magma and
the falling of some of the rocks on the same linear line
suggest that these rocks are co-magmatic (Zorano et al.,
2007, Maulanaetal.,2012).

The enrichment in the large ion lithophile elements
(LILE) of Th, U, Ba, Pb, K, Sr Rb and Ce in gneisses and
granites and Rb, Th, Hf, Zr and Nb in pegmatite (Table
1) and their corresponding positive anomalies on the
chondrite normalized spider plots (Figures 21 - 26)
indicates calc-alkaline and crustal affinity. On the other
hand, the enrichment of Co, Cs, Mn, Ni, Pb and Ta
(Table 1) in basalt and their corresponding positive
anomalies on the chondrite normalized spider plots
(Figure 27) suggests basicity of the rock and mantle
affinity. The enrichment in the high field strength
elements (HFSE) of Zr, Hf, Nb, Ta and Th and the
variations in the values of Ba with respect to Sr and Rb
in the rocks indicate fractionation (Zorano et al., 2007,
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Ugwuonah, 2009 and Ugwuonah and Obiora2011).

The chondrite-normalized REE patterns of the rocks in
the study area are characterized by enrichment in LREE
relative to depletion in HREE (Figure 21 - 26). ).
According to Compton (1978), the enrichment in LREE
and depletion in HREE suggest that the melts from
which these rocks were formed equilibrated with
residual garnet (which is the principal reservoir of
HREE) and may also contain high concentration of
Zircon, apatite (which is also responsible for HREE
retention). This demonstrates calc-alkaline/basicity of
the rocks. The prominence of negative values of Eu in all
the rocks and with regards to their relationship with
plagioclase and K- feldspars and its removal during
partial melting shows a highly fractionated magma
source since feldspars are the only rock forming
minerals which are relatively enriched by Eu (Girei
2015).
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General Classification

Tectonic discrimination diagrams of Rb vs. (Yb + Ta)
after Pearce et al (1984) shows that granite gneiss and
granites are sandwiched between volcanic arc granite
(VAG) and Syn-COLG (Figure 28). Discrimination
diagram of Zr-Ti-Sr after Pearce and Cann (1973) for
basalts in Figure 29 shows that the basalts are mid
oceanic ridge (MORB). TAS discrimination diagrams
of SiO, vs. Na,O + K,O after Cox-Bell-Pank (1979)
shows that granite gneiss and granites fall within the
granite field (Figures 30 and 31). This has further
confirmed the evolution of the granite gneiss from the
Older granite. Discrimination plot of SiO, against Na,O
+ K,O after Le Bas (1986) for basalt shows basalt
plotting within the basalt field (Figure 32). On the other
hand, AFM diagrams after Irvine and Baragar (1971)
shows that the gneisses, granites and pegmatite are calc-
alkaline while basalt is tholeiitic (Figure 33).
Discrimination diagrams of K,O vs. Na,O after Rajesh
and Santosh (2004) shows that the granites are I-type
(Figure 34), metaluminous to weakly peraluminous
(Chappell et al. 2012) and are characterized by the
presences of hornblende which are derived due to partial
melting of igneous protolith (Clemens and Stevens,
2012).
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Petrogenesis

The negative distribution trend of Ta, Nb, Sr and Eu; the
enrichment of Rb, Ba, Sr K, U and Th in gneisses,
granites and pegmatite and the calc-alkaline affinity is
typically associated with magmas evolved from




Journal of Mining and Geology Vol. 58(1) 2022. 169
TIA00 PP
14 - i
A" Phonolite
'// R y,
A: Islan-Are Tholeiites 2 - Foidite s \\/
B: Calc-Alkall Basaits 5 ATephrPhongls X
", C: MORB g P AN Trachyta
' 10 - J
\ & A Phanatephiite’ ., Vechydtacis
] AR AN Trachy-
= /o'Yepr‘nte ¢ Bar-ahlr\"\ andesite \\ "\ Royole
Basanile T \‘ /,--’*’- \"-\
6 F _.-’Tmy‘{'mm A Y
y " Basalt - A
\
< i o8 Basaitic | Andesie e ‘\\.
) . \ 5 " t Basalt  |Andesite '
] C . 2r Picro
| : v . A . Basall
e 0 F
v ‘ B \._‘ 1 1 A 1 1 1 1
\\ 3 40 45 50 55 60 65 70 75
Sio2
| 44 E1lF |
Fig.29: Discrimination diagram of Zr-Ti-Sr for basalts Fig.32: TAS diagram for basaltafter Irvine and Baragar (1971)
- x
16 |
14 F \ ) A Legend
. ‘tfy:?,'llt:} A / A-Pegmatite
. | ¥4 S T B-Granite Gneiss
g "y s SN syenite Tholeiitic C-Granite
g / Fd e / A . D-Migmatite-Gneiss
& 1w0F 7] Syemte :_?a.\ f/' il AN ‘. E-Basalt
o~ /_.___, = . W A y B
2 \ ~ \\ J’IY\.. GfaTe 0.‘ -
- K Holite Vi 4 LN " s E
/ ) S)rlu -Diorile i - et
ol 4 / Gabbm ‘,a" e \” i LY
I e o ¥
Diorte ‘..;?."’"“ ]
TAR -~ ) V. VAR Y L.
& / Gabbro Dicrite ol 487
| L€ {8 <) 5
i i s
I Galc-.l\l_kaling 4%
0 / X
1 - L L 5 ] ) £
35 40 45 50 56 60 65 70 75 ha _'_‘
Si02 v \
A My
Fig. 30: . TAS discrimination plot of SiO, vs. Na,O + K,O granites Fig.33: AFM diagram for the rocks after Le Basetal (1986)
after Cox-Bell-Pank (1979)
' Legend 50 -
T amG1
[ ®MG 2 45 F
“reMG 3 \\Ne cline-
' YGG 1 yenite
. Py Vi 4 4.0 + &
5 22662 N /" syeite I-Type + -
g | / e il
X 1 s Syanl!e . E=
~ " e -
E——— (=]
- | ,Jc,",,e\? \ S & 30 - " * ~"  Legend
/ ,G Syano Diorite | et z . = HGG 1
i abbro / Quarz \ﬁ 25 | i~ - o MGG 2
1 Diorite - . 2CGG 1
4ar / Diorite ol - YCGG 2
) 15 - S-Type A0PG 1
- g +0PG 2
| sl *0PG 3
S VIS VIS VN SRS TR S TR S Vo R i | | f
3 a0 4 50 5'5;2 80 8 o 7 34 36 38 40 42 44
: K20

Fig. 31: TAS discrimination plot of SiO, vs. Na,O + K,O gneisses

after Cox-Bell-Pank (1979)
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continental crust (Ugwuonah, 2009; Ugwuonah and
Obiora, 2011). The enrichment in LREE relative to
depletion in HREE in the granite gneiss and granite
suggests that their progenitors were derived from a
cratonic source because the principal carriers of REEs in
most granite are the accessory minerals such as
monazite, zircon and apatite (Ugwuonah, 2009 and
Ugwuonah and Obiora, 2011). Saleh and El-Nisr,
(2013) further stated that fractionation of such
accessory minerals results in lowering of REEs content
in the granites. On the other hand, the enrichment of Ni,
Ti and Fe,O, is attributed to the abundance of olivine,
pyroxene and opaque (Fe,O;) in basalt and suggest
mantle source (Brophy, 2008). The LREE depletion in
basalt reflects the incompatible element-depleted nature
of the upper mantle from which these magmas were

Journal of Mining and Geology Vol. 58(1) 2022.

derived. The negative linear trend correlations and the
negative Eu of the rocks suggest that the rocks most
likely resulted from fractional crystallization during
magmatic evolution (Maulana et al., 2012).
Discrimination diagram of SiO, vs. TiO, after Rajesh
and Santosh (2004) revealed that all the rocks in the
study area suggest igneous progenitors (Figure 35).

Conclusions and Recommendations

Field, petrography and petrochemical data has
differentiated the rocks of Pella into migmatite-gneiss,
granite gneiss, basalt and pegmatite. The petrographic
results have agreed with geochemical data and ground
truthing. The geochemical data have also proven that the
major rocks in Pella are dominantly calc-alkaline,
fractionated and have continental crust affinity. The
similarities in data of the granite gneiss and granites
show that they are genetically related to a common
source. Unless otherwise proven, anatexis is responsible
for the evolution of the rocks in Pella and environs. On
the other hand, it is strongly recommended that further
studies be carried out in adjoining areas to further
unravel the geology of the area with the view of
differentiating the rocks.
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