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Introduction

Extensive limestone deposits abounds in the Nigerian 
sedimentary basins including but not limited to the 
Sokoto, Anambra and Dahomey Basins. This essential 
industrial mineral which finds its use in the 
construction, agricultural and many other industries 
covers close to fifteen percent of the world's 
sedimentary basins (Wilson, 1975). Shallow, warm 
marine environments which are habitats for carbonate 
frame building organisms including brachiopods, 
ammonites, gastropods, foraminifera, ostracod and 
many other macro- and micro shelly organisms favour 
limestone accumulation. Limestone successions are 
reported in environmental settings such as continental 
basin margins (Wilson, 1975), oceanic floors above 
carbonate compensation depths (CCD) and some inland 
basins (Kerr, 2014; Zhang et al., 2014; Liu et al., 1988; 
Nath et al., 1997; Alonso-Zarza, 2003). Limestone is 
primarily composed of CaCO , however, it also contains 3

a variety of major, trace and rare earth elements obtained 
through metalliferous and terrigenous particulates and 
scavenging from seawater (Bertram and Elderfield, 
1993; Siby et al., 2008).

The Paleocene limestone deposits of the Ewekoro 
Formation is an extensive deposit which straddles the 

eastern sector of the Dahomey Basin, located in Western 
Nigeria. The deposit has been subject of diverse study 
(Bankole, et al., 2021; Akaegbobi and Ogungbesan, 
2016; Adekeye and Akande, 2006).

The inclusion of rare earth elements (REE) in carbonate 
rocks provides important information on depositional 
conditions such as oceanic paleo-redox conditions 
(German and Elderfield, 1990; Murray et al., 1991) and 
diagenetic processes (Madhavaraju and Ramasamy, 
1999; Armstrong-Altrin et al., 2003). REE in sediments 
do not easily migrate. Hence, the REE signatures in 
carbonates are widely used to trace the geochemical 
properties of the surrounding fluids (such as seawater 
and pore water) and environmental conditions during 
primary carbonate deposition. 

The present study is aimed at using facies analysis and 
componen t  a s soc i a t i on ,  s ed imen to log i ca l  
characteristics, mineralogy, and geochemistry to 
decipher the prevailing depositional conditions during 
the accumulation of the Ewekoro Limestones. 

Geological Setting and Stratigraphy of the Study Area

The study area is located in the eastern Dahomey Basin, 
southwestern Nigeria (Fig. 1). It is an extensive 
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Benin to southwestern Nigeria. It is separated from the 
Niger Delta by a subsurface basement ridge referred to 
as the Okitipupa Ridge.

sedimentary basin formed from the amalgamation of 
inland/coastal/offshore basins that extends from 
southeastern Ghana through Togo and the Republic of 

Fig. 1: Geological map of the eastern Dahomey Basin. Inset; Geological sketch map of Nigeria. The rectangle shows the study area.  
(The Eastern Dahomey Basin Map is modified after Bankole et al., 2006).

deposit, in the quarry is divided into two sectors; the low 
grade and high grade occupying the northeastern and the 
southwestern sectors of the quarry respectively (Fig. 3). 
The low-grade area is characterized by thin overburden, 
mainly clay, grading, to lateritic soil. In the contrary, the 
high-grade area is covered by massive grey to dark grey 
shale overburden shielding the underlying limestone 
from meteoric water percolation.

Materials and Methods

Four of the six sections logged durig the field 
investigation are represent in figure 4. From the logged 
sections,  a total of twenty two samples collected for 
analyses. The analyses include thin sectioning, X-Ray 
diffractometer (XRD) and combined ICP-MS and ICP-
OES for component identification, mineral 

Early researchers on the evolution and stratigraphy of 
the eastern Dahomey Basin include Jones and Hockey, 
1964; Reyment 1965; Ogbe, 1972; Omatsola and 
Adegoke, 1981, and Billman, 1976 among others. The 
stratigraphy of the Basin (Fig. 2) is divided into the 
Cretaceous sediments of the Abeokuta Group, 
composed of the Ise, Afowo, and Araromi Formations, 
and the Tertiary sediments of the Ewekoro, Ososun, and 
Ilaro Formations. The present study focuses on the 
Ewekoro Formation, which is an extensive limestone 
deposit resulting from the shallow warm marine 
environment during the Paleocene. The Ewekoro 
Formation is highly fossiliferous, comprising coralline 
algae, gastropods, pelecypods, echinoid fragments, and 
other skeletal debris.

The study area is a massive limestone quarry. The 
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identification and elemental concentration respectively. 
Thin sectioning was carried at the rock laboratory of the 
Department of Geology, Kwara State University, 
Nigeria. Petrographical scanning for facies analysis and 
component identification was conducted at the 
sedimentological laboratory of the Department of 
Geosciences, University of Lagos. XRD analysis for 
mineral identification was conducted at the NGSA 
laboratory, Kaduna. The geochemical analyses were 
carried out at the SGS Laboratory, Randfonten, South 
Africa.

Mineralogical Analysis

Ten limestone samples from the twenty samples 
collected were selected for XRD analysis. One to two 
grams of the pulverized sample was weighed into the 
sample holder, and with the use of a glass slide, the 
sample was compacted to give an even surface area. The 
sample holder was then placed in the XRD multi-sample 
holders' chamber, and the machine calibrated to begin 
the analysis. Thereafter, the analyzed sample(s) were 
automatically saved into a directory folder, which is 
further uploaded to STUDIO SMART LAB II in 

Fig. 2: Generalized Age and stratigraphic setting of the Dahomey 
Basin (Bankole et al., 2006)

Fig. 3: Map of the South-Western Mine (SWM) in the Ibese quarry and sample locations
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The Ewekoro Limestone is highly fossiliferous, with 
highest concentration of fossils in the uppermost section 
prior to the deposition of the relatively thinly bedded (10 
cm to 1.5 m) glauconitic sand which directly overly the 
limestone (Figs. 4A-D).

Laboratory Analytical Results

Petrography: The component of the studied limestone 
includes bioclasts, micrites, and sparry calcite. The 
bioclasts comprise of skeletal grains including, 
foraminifera, gastropods, brachiopods, bivalves, 
ostracodes, echinoderms, and green algae, while the 
non-skeletal grains consist of ooids, oncoids peloids 
(Figs. 5 and 6). Based on the classification scheme of 
Dunham (1962), two microfacies are identified. 

Carbonate Classification
Packstone: Bioclastic Packstone: It is characterized by 
the presence of skeletal grains, including bivalves, 
echinoids, brachiopod spines, and algae and an 
abundance of non-skeletal ooids. The outer layer of the 
ooid casts were well preserved with thin micritic 
coating, however the nuclei had been replaced with 
sparry calcite. (Figs. 5A-C).

Gastropod-Ostracod Packstone: casts of skeletal 
grains including gastropods, fragmented and whole 
ostracodes, and bivalves. The high inward spire was the 
characteristic feature used to identify the gastropod 
shell. The gastropod shells have thickened, ornamented 
calcitic rims with small cavities. The original aragonite 
material of the shell was replaced with sparry calcite, 
and the cavities are filled with micrite. The gastropod 
grains are surrounded by grains of foraminifera, 
brachiopods, and bivalves (Figs. 5D - F).

Bioclastic Packstone: It is characterized by the 
presence of skeletal grains, including brachiopod shell, 
fragmented ostracod, orbitolinid foraminifera, biserial 
foraminifera, bryozoan, and phylloid algal Most of 
which have had their original mold replaced by sparry 
calcite with negligible micrite infillings (Fig. 5G-L).

Wackstone: Skeletal Wackestone: This microfacies 
consists of skeletal grains, including, crinoids, 
brachiopod spines, brachiopod shells, and differentiated 
tests and globigerina floating on microsparite cement 
(Figs. 6A-F).

Gastropod-Foraminifera Wackestone: Gastropod 
shells with their internal mold replaced with microspar 

conjunction with ICDD PDF-4 to perform an 
automatic/manual search-match. The results of the 
analysis are then generated and either saved for 
reference purposes or printed out.

Geochemical Analysis 

After pulverization, 0.10 g of the sample was weighed 
into a crucible with Sodium Oxide and Sodium 
Hydroxide (Na O + NaOH) added to the sample, mixed, 2

and fused. After the fusion, the sample was leached, 
acidified, and made up to volume. The solution obtained 
was then analyzed using ICP-OES and ICP-MS. To 
ensure accuracy and precision, a minimum of one 
Reagent Blank and Certified/In-house Reference 
Material and one replicate was used with the batch of 
samples. After the analysis was completed, the resulting 
data was fed to the laboratory information management 
system with a secure audit trail.

Results and Interpretation

Lithological Results

The Ewekoro Formation, as sampled in the six studied 
sections consists of limestones that are distinctively of 
two grades: the low-grade and high-grade. This 
distinction is made on the basis of the percentage 
concentration of CaCO , and alumina content of the 3

limestone. The percentage concentration of CaCO  in 3

the high-grade limestones is greater than 50% and a low 
percentage concentration of alumina. Conversely, the 
percentage concentration of CaCO  in the low-grade 3  

limestone is less than 50% and a significant percentage 
concentration of alumina. Field relations show that the 
low-grade limestones are devoid of thick shale 
overburden, majorly overlain by thin clay and lateritic 
soil. These allowed percolation of meteoric water, 
resulting in extensive weathering, giving the limestone 
a yellowish coloration. Prevalence of vugs, filled with 
organic matter, characterises the low grade limestone. 
The vugs develop in response to dissolution of 
limestone by the percolating meteoric water. On the 
contrary, the high-grade limestone is overlain by thick 
shale overburden, shielding the deposit from meteoric 
water percolation, resulting in highly lithified rock with 
greyish to whitish colour. Though the presence of vugs 
could be observed in the high grade limestone, but only 
common at the upper section. The limestone deposit in 
the investigated area dips in northwest-southeast 
direction. The low-grade limestones are located in the 
northwestern sector of the study, with the high-grade 
counterpart occupying the southeastern portion. 
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Fig. 4: (A-D) Logged sections of the studied Paleocene Ewekoro Limestone samples. A-B Lithologic section of low-grade limestones in the 
study area. C-D Lithologic section of high-grade limestones in the study area
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Fig. 5: A. (Arrow) An echinoderm spine with a distinct radial septa and negligible micrite infillings, surrounded by bioclasts and ooids. B. red algae 
with segments consisting of nearly equal cells and a cortex composed of tiny cells. The reticular appearance is due to micrite walls separating the 
small cell surrounded by ooids (Arrow)with nucleus replaced by sparry calcite. C. fragments of micritized bivalve shells embedded in a coating of 
calcite. D-F. high spired gastropod shell with thickened columella and cavity filled with micrite; Whole ostracod shell with original carbonate 
material dissolved, leaving a mold that was replaced by microspar. Around the central ostracods are fragmented ostracod carapaces and bioclasts; 
Fragmented ostracod shell, bioclasts, and trilobite (Arrow) with interior filled with sparry calcite. G-L. phylloid algal with a fibrous wall structure 
interrupted by calcitic rods; transverse section of an orbitolinid foraminifera; fragmented ostracod spine surrounded by bioclasts; a well preserved 
impunctate brachiopod shell, bioclasts, and brachiopod spine (Arrow) with a concentric fibrous inner layer filled with micrite; biserial foraminifera 
with thin rims of calcite around the outer layer and inner layer filled with micrite; cross section of a cheilostome bryozoan with delicate branches. 
This transverse cut through the branch shows an empty zooecia. The zooecia is filled with sparry calcite and micrite.
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tubes, globigerina, and pelecypods in a micrtized matrix 
(Figs. 6G-I).

and thick rims of calcite replacing the outer layers 
constitute the most abundant grain in this microfacies. 
They occur alongside foraminifera, serupilid worm 

Fig. 6: A-C. an articulated crinoid columnal with a moderately varying unit extinction and a well-defined rectangular outline of the columnal; a 
brachiopod spine with a two-layered, fibrous wall structure and an inner layer that was obliterated by dissolution and replaced with micrite, floating 
on microcar cement; an impunctate brachiopod shell wall with a characteristic low-angle fibrous structure. D-F. fragmented differentiated test 
floating on mud matrix; transverse section through a brachiopod spine, with well-preserved outer layer, and micrite filled cavity, floating on micritic 
cement; cross section through a globigerina shell with well-preserved tests filled with calcite, and micrite filling of their chambers. G-I. gastropod 
shell with original aragonite replaced with sparry calcite and preserved by a calcite rim; gastropod shell with the internal mold replaced with 
microspar and rims of calcite replacing the outer layers; biserial foraminifera shell coiled tightly about its axis with outer layer preserved by thin 
calcite rim, underneath which there is a miniature gastropod shell.

may be attributable to the influx of terrigenous clastic 
materials from the continent at the early stages of 
limestone deposition, which later reduced as time 
passed by. The X-ray diffraction (XRD) results revealed 
higher calcite percentages in locations where thick shale 
overburdens are prevalent (Locations 4, 5, and 6). This 
is so because the overburden acts as a protective cover, 
shielding the underlying limestone from weathering 
processes such as chemical dissolution which may be 

Mineralogy

Table 1 depicts the mineralogical analytical results of 
the Ewekoro Limestone. The results show the 
dominance of calcium in all the samples.  Percentage 
calcium content in all the samples increase down the 
section, whereas quartz content decreases. However, 
towards the base of the sections, there is increase in 
quartz content and decrease in calcium content. This 
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The PASS normalized REE + Y pattern of the studied 
limestones display relatively uniform patterns among 
the different litho-units (Fig. 8).  Majority of the sample 
appeared to follow the same trend with the exception of 
samples L4S7 and L6S3. Sample L4S7 is the only 
sample that shows a distinct increment in REE 
concentration compared to other samples. Nevertheless, 
it follows a similar REE distribution pattern with other 
samples.  Conversely, sample L6S3 is the only sample 
with a distinct decrease in REE concentration compared 
to other samples. 

The limestones exhibit the following characteristics:  a) 
an enrichment of light rare earth elements (LREEs: La- 
Gd) and Yttrium (Y) and a depletion of high rare earth 
elements (HREEs: Tb- Lu), with (Nd/Yb) ranging SN 

from 1.03 to 8.90, (SN – Shale Normalized),  (Dy/Yb) SN 

ranging from 1.02 to 8.07, and low Er/Nd values ranging 
from 0.04 to 0.10. According to Wyndham et al., (2004), 
these values indicate the preferential scavenging 
process of LREE which is the dominant process 
controlling the changes in the (Nd/Yb)  ratio in SN

limestones (Table 4). The high (Nd/Yb)  ratio is SN

attributable to the property of adsorption/scavenging 
processes in which the LREE are: a) preferentially 
adsorbed onto the particle surfaces and retention in 
solution of smaller ionic radius HREE. b) Consistent 
positive Ce anomaly. c) High Y/Ho ratio ranging from  

26.48 to 60.0.

The bivariate plot of Pr/Pr* vs Ce/Ce* for the limestone 
samples from the study areas is depicted in figure 9. The 
plot reveals a positive Ce anomaly and a negative La 
anomaly.

Discussion

Microfacies Interpretation and Depositional 

Environment

According to Flugel (2010), an integrated approach 
combining different methods and using information 
from the sedimentary record, including microfacies 
analysis, is suitable for reconstructing the 
paleoenvironment of carbonates. The microfacies types 
of the studied rock samples revealed by the petrographic 
study of the thin sections revealed the presence of 
diverse fossil organisms typical of shallow warm 
marine environments. Two types of cement were 
observed in the studied samples; a primary micrite and a 
secondary  spar ry  ca lc i te  formed through 
recrystallization of the primary carbonate material. 

caused by meteoric water infiltration. Induced pressure 
from overburden aids grain to grain contacts resulting in 
the precipitation and development of secondary 
minerals, such as calcite cement, which strengthens the 
limestone and improve its preservation.

The muscovite and albite in the studied limestone 
sample probably originated from the weathered 
crystalline rocks transported from the hinterlands.

Table 1: Mineralogical composition of outcrop 
samples in the study area

Geochemistry

Trace Element

The concentrations of trace elements in the analyzed 
limestone samples are presented in table 2. These 
concentrations are normalized to standard trace element 
concentrations with Post Archean Australian Shale 
(PAAS) compiled by Taylor and McLennan (1985). 
Significant variability in transition trace elements (TTE: 
Co, Cr, Cu, Ni, V) and High field strength element 
(HFSE: Nb) and metals (Zn, and Mn) were seen in the 
PAAS-normalized trace element concentrations (Fig. 7). 
The PAAS normalized pattern of the studied limestone 
showed significant enrichment in Sr and depletion in Th, 
Nb, Cs and V.

Rare Earth Element

The concentrations of the rare earth element (REE) 
obtained from the analyzed limestone samples are 
presented in table 3. The concentrations are normalized 
to standard rare earth element concentrations with Post 
Archean Australian Shale (PAAS) compiled by Taylor 
and McLennan (1985). The total REE (?REE) of the 
studied limestone samples range from15.74 to 564.53 
ppm (Table 3). The ÓREE contents of the studied 
samples are higher than the range for marine carbonates 
(0.04-14 ppm; Turekian and Wedepohl, 1961).
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The amount of REE found in sediments can be 
influenced by various factors, including the authigenic 
removal of REE from the water column and early 
diagenesis (Sholkovitz and Elderfield, 1988); the 
biogenic deposition of sediments from overlying 
seawater (Murphy and Dymond, 1984); input of 
terrigenous particles from continental sources (Liu et 
al., 1988); scavenging processes associated with depth, 
salinity, and oxygen levels (Greaves et al., 1999).

Nothdurft et al., (2004) indicated that samples with a 
seawater-like pattern contribute a lesser amount of REE 
to the chemical sediments. Conversely, samples 
exhibiting non-seawater-like patterns showed higher 
concentrations of REE. The increased REE 
concentration in non-seawater-like patterns can be 
attributed to the contamination by materials such as 
silicates, Fe-Mn oxides, phosphates, or sulfides during 
the chemical leaching process (Zhao et al., 2009). The 
total REE (ÓREE) content in original carbonates is 
expected to be low, and the presence of elevated ÓREE 
content can be attributed to these non-carbonate 
contaminants originating from hydrothermal sources 
and/or terrestrial particulate matter (Frimmel, 2009). In 
the study area, the ÓREE values of limestone samples 
exhibited significant variation, ranging from 15.74 to 
564.53 ppm. These values surpassed the range typically 
observed for marine carbonates (0.04-14 ppm; Turekian 
and Wedepohl, 1961) as well as the average value for 

Table 2: PAAS Normalized Trace elements concentrations (ppm) of Limestones from the study area

Fig. 7: PAAS-normalized trace elements distribution of limestone 
samples at the study area.

These cements hold information on the hydrodynamic 
controls (depositional water energy) under which the 
sediments were deposited. The presence of micrite 
suggests low energy environment characterized by 
gently moving water commonly associated with slow 
sediments accumulation. Whereas, sparry calcite is a 
diagenetic product precipitated after the deposition of 
calcium rich sediments. Microfacies interpretation 
indicate the dominance of packstone over wackstone. 
This suggests the prevalence of high energy over the 
quiet, low energy environmental condition during the 
accumulation of the Ewekoro Limestone.

Source of REE
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typical marine carbonates (~28 ppm; Bellanca et al., 
1997).

The Er/Nd ratio serves as an indicator of LREE/HREE 
fractionation in modern and ancient marine systems, as 
discussed by German and Elderfield (1989). Normal 
seawater exhibits an Er/Nd ratio of approximately 0.27 
(De Baar et al., 1988). Elevated Er/Nd ratios indicate the 
presence of a seawater signature preserved in the marine 
carbonates. However, the addition of detrital material or 
diagenetic processes can reduce the Er/Nd value to less 
than 0.1 due to preferential concentration of Nd relative 
to Er (Bellanca et al., 1997). The studied limestones 
displayed Er/Nd ratios ranging from 0.04 to 0.10, with 
an average of 0.07, suggesting the influence of detrital 
sources on REE concentrations. The negative and weak 
correlations observed between ÓREE content and 

Table 3: Rare earth elements concentrations (ppm) for limestones from the study area

Fig. 8: PAAS-normalized rare earth elements distribution of limestone 
samples from the study area.

Table 4:  Range of element ratios of the limestone from the study 
area compared to felsic and mafic rocks of UCC and PASS

1
Present study, n = 20

2
Cullers (1994, 2000); Cullers and Podkovyrov (2000); Cullers et al. 

(1988)
3
Taylor and McLennan (1985).

Fig. 9: Plot of PAAS-normalized Pr/Pr* vs Ce/Ce* (modified after 
Bau and Dulksi, 1996)
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range from 0.27 to 0.63, with an average of 0.54 ± 0.08 
(n=20). All the analyzed samples exhibit Ce/Ce* values 
below 1. In seawater, Ce/Ce* values typically range 
from 0.1 to 0.4 (Elderfield and Greaves, 1982; Piepgras 
and Jacobsen, 1992), while the average shale value is 1 
(Cullers and Stone, 1991). This suggests that the Ce/Ce* 
values in the limestone samples from the study area have 
been influenced by the precipitation processes 
involving seawater.

Under suboxic conditions, Ce can be mobilized and 
released into the water column, resulting in a positive 
anomaly in seawater (De Baar, 1991). Furthermore, the 
interpretation of Ce anomalies from Ce/Ce* values can 
be complicated by the variable La content. Enrichment 
of La can occasionally lead to an overstatement of 
negative Ce anomalies (Bau and Dulski, 1996). To 
address these complexities, the Pr/Pr* vs Ce/Ce* 
discriminant diagram (Fig. 9), initially proposed by Bau 
and Dulski (1996) and modified by Webb and Kamber 
(2000), allows for the assessment of "true" Ce 
anomalies and the extent of La enrichment. Positive Ce 
anomaly majorly occur due to detrital inputs 
(Madhavaraju and Lee 2009) scavenging process 
(Masuzawa and Koyama, 1989), diagenesis 
(Armstrong-Altrin et al., 2003), and anoxic condition 
(German and Elderfield, 1990).

Paleo-Oxygenation Conditions

Redox-sensitive trace elements exhibit greater 
solubility in oxidizing environments compared to 
reducing environments, leading to their enrichment in 
authigenic minerals within anoxic deposition settings 
(Zuo et al., 2020). This characteristic establishes 
elements such as U, V, Mo, Cr, and others as valuable 
indicators for assessing the redox properties of aquatic 
systems. Furthermore, certain elements that are 
sensitive to redox conditions, including Ni, Cu, Zn, and 
Cd, are absorbed by organic matter and subsequently 
incorporated into sediments, thereby serving as 
indicators of a reducing environment (Sial et al., 2015; 
Yang et al., 2018). The ratios of redox-sensitive trace 
elements have been employed to interpret the prevailing 
depositional environment (Abou El-Anwar et al., 2019; 
Jeon et al., 2020). Consequently, parameters such as V/ 
(V + Ni), V/Ni, and V/Mo can be used to determine the 
redox conditions within a given depositional 
environment.

A V/Ni ratio greater than 3 signifies the deposition of 
organic matter under reducing marine environments 
(Galarraga et al., 2008). V/Ni ratios ranging from 1.9 to 
3 suggest deposition under dysoxic to oxic 

diagenetic proxies further support the presence of 
detrital contaminants in the studied limestones. The 
weak negative correlation between ÓREE and Sr (r = -
0.49) indicates that the influence of diagenetic processes 
on REE concentrations is limited.

The application of La/Co, Th/Co, Th/Cr, and Cr/Th 
ratios is widely employed in the investigation of source 
region composition, which is shown by variation in 
these ratios based on the contribution from felsic and 
mafic (Armstrong-Altrin, 2009). In the present study, 
the La/Co, Th/Co, Th/Cr, and Cr/Th ratios of the 
analyzed limestone samples were compared with those 
of felsic and mafic rocks (fine fraction), as well as with 
the average upper continental crust (UCC) and PAAS 
values (Table 3). The results indicate that these ratios 
fall within the range of intermediate to felsic rocks.

Y/Ho Ratio

Yttrium occupies a position between Ho and Dy in the 
REE +Y pattern due to its similar charge and 
comparable atomic radius (Bau, 1996). Unlike its 
geochemical counterpart Ho, Y remains in seawater due 
to differences in surface complex stability, resulting in a 
notably super chondritic marine Y/Ho ratio (Bau, 1996). 
In general, seawater exhibits high Y/Ho ratios (~44-74), 
while terrigenous materials and volcanic ash maintain 
consistent chondritic Y/Ho ratios (~28). The analyzed 
limestone samples demonstrate variation in Y/Ho ratios 
ranging from 26.48 to 60.0, with an average of 35.8. 
Most of the samples exhibit Y/Ho ratios higher than the 
chondritic value (~28) but lower than the super 
chondritic value observed in seawater. The observed 
variation in Y/Ho ratios in this study suggests that the 
limestones of the Ewekoro Formation is contaminated 
by terrigenous materials.

Cerium Anomaly (Ce/Ce*)

The Ce anomaly is a useful tool for interpreting the 
redox conditions in seawater during the incorporation of 
rare earth elements (REE) into marine sediments 
(Madhavaraju and Lee, 2009). Unlike other REEs, Ce 
has the potential to be oxidized in seawater, 

3+ 4+
transitioning from the Ce  to the less soluble Ce  
oxidation state (Nagendra et al., 2011). In well-

4+
oxygenated seawater, the Ce  can be incorporated into 
marine sediments, leading to an enrichment of Ce in the 
sediment relative to other REEs (Bellanca et al., 1997). 
This process of Ce enrichment in sediments results in a 
depletion of Ce in seawater compared to other rare earth 
elements (Bellanca et al., 1997). The Ce/Ce* values 
observed in the limestone samples from the study area 
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environments, with a mixture of terrigenous and marine 
organic matter. V/Ni ratios below 1.9 indicate the 
deposition of terrigenous organic matter under oxic 
conditions. The V/Ni ratios of the studied samples vary 
from 0.09 to 6.00 with an average of 1.48, suggesting 
that the samples were deposited under varying suboxic 
to oxic conditions.

According to Jeon et al. (2020), a higher V/ (V + Ni) 
value indicates a more strongly reducing condition 
compared to anoxic conditions. A V/ (V + Ni) value 
greater than 0.60 suggests an anoxic depositional 
environment, while values between 0.46 and 0.60 
indicate a suboxic environment, and values below 0.46 
indicate an oxic depositional environment. The V/ (V + 
Ni) values observed in the limestone samples analyzed 
in this study ranged from 0.08 to 0.86, suggesting that 
they are deposited under suboxic to anoxic conditions.

The V/Mo ratio of <2, indicates an anoxic condition, a 
range from 2 to 10 indicates suboxic condition and a 
range from 10 to 60 indicates normal oxygenation 
(Abou El-Anwar et al. 2019). The V/Mo ratio of the 
studied limestone samples ranges from 0.58 to 19.25, 
indicating that they were deposited under anoxic to 
suboxic conditions.

The Th/U ratio can be used as indicator for redox 
conditions. Uranium, being a redox-sensitive element, 
maintains a predominantly higher oxidation state, U6+ 
in oxidizing environments, resulting in the formation of 
a water-soluble uranyl carbonate compound. 
Conversely, under reducing conditions, uranium retains 
a lower oxidation state, U4+, leading to the formation of 
an insoluble uranium fluoride compound that becomes 
trapped within marine carbonates (Wignall and 
Twitchett 1996). In contrast, Thorium is not influenced 
by the redox conditions within the water column and 
consequently persists in the insoluble Th4+ state. This 
disparity indicates that sediments situated in anoxic 
environments exhibit higher uranium content and lower 
Th/U ratios compared to those in oxygenated 

environments. The Th/U ratios have been employed as a 
means to ascertain the redox conditions of the 
environment, with ratios less than 2 signifying anoxic 
marine sediments, ratios ranging from 2 to 7 indicating 
oxic sediments, and ratios exceeding 7 suggesting 
highly oxygenated terrestrial environments. In the 
present study, analysis of limestone samples revealed 
Th/U ratios ranging from 0.1 to 2.87, with an average 
value of 0.81. Furthermore, an overwhelming majority 
of the analyzed samples (over 95%) exhibited ratios 
below 2, providing evidence of limestone precipitation 
occurring in anoxic to dysoxic conditions.

Conclusions

The petrography study indicated the deposition of the 
limestone in a fluctuating low energy to high energy 
environments. The presence of micrite suggested a low 
energy environment while calcite cements suggested a 
high energy environment. In addition, the microfacies 
types, indicated that the limestones were deposited in 
the close lagoonal, open lagoonal, and restricted shoal 
environments.

The geochemical analysis showed a variation in 
elemental concentrations. Trace element ratios of 
V/Mo, V/ (V/Ni), and Th/U suggested that the 
limestones were deposited under oxic to anoxic 
conditions. The average V/Ni ratio indicated 
terrigenous material contribution to the marine 
environment, probably resulting from runoff from rivers 
emptying their contents into the coastal areas. The 
enrichment of LREE and the depletion of HREE in the 
limestone suggests the retention of non-seawater 
patterns. The REE signatures, such as the low Er/Nd, 
and the varied Y/Ho ratios, indicates that the REE 
concentration of the limestone was mainly influenced 
by terrigenous (detrital) contamination. The positive Ce 
anomaly and the varied Mn* value suggests that the 
limestones were deposited under varying suboxic to 
oxic conditions.
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